
Package: arrApply (via r-universe)
September 6, 2024

Type Package
Title Apply a Function to a Margin of an Array
Version 2.2
Date 2023-09-10
Author Serguei Sokol
Maintainer Serguei Sokol <sokol@insa-toulouse.fr>
Description High performance variant of apply() for a fixed set of

functions. Considerable speedup of this implementation is a
trade-off for universality: user defined functions cannot be
used with this package. However, about 20 most currently
employed functions are available for usage. They can be divided
in three types: reducing functions (like mean(), sum() etc.,
giving a scalar when applied to a vector), mapping function
(like normalise(), cumsum() etc., giving a vector of the same
length as the input vector) and finally, vector reducing
function (like diff() which produces result vector of a length
different from the length of input vector). Optional or
mandatory additional arguments required by some functions (e.g.
norm type for norm()) can be passed as named arguments in
'...'.

License GPL (>= 2)
Imports Rcpp (>= 0.12.0)
LinkingTo Rcpp, RcppArmadillo
Suggests testthat
RoxygenNote 7.2.1

URL https://github.com/sgsokol/arrApply

BugReports https://github.com/sgsokol/arrApply/issues

SystemRequirements C++11
Repository https://sgsokol.r-universe.dev
RemoteUrl https://github.com/sgsokol/arrapply
RemoteRef HEAD
RemoteSha 2497c7a3a53e725499daad1095888f2048bd358e

1

https://github.com/sgsokol/arrApply
https://github.com/sgsokol/arrApply/issues

2 arrApply

Contents
arrApply . 2

Index 5

arrApply High Performance Variant of apply()

Description

High performance variant of apply() for a fixed set of functions. Considerable speedup obtained
by this implementation is a trade-off for universality, user defined functions cannot be used with
arrApply. However, about 20 most currently employed functions are available for usage. They can
be divided in three types:

• reducing functions (like mean(), sum() etc., giving a scalar when applied to a vector);

• mapping function (like normalise(), cumsum() etc., giving a vector of the same length as the
input vector)

• and finally, vector reducing function (like diff() which produces result vector of a length dif-
ferent from the length of input vector).

Optional or mandatory additional arguments required by some functions (e.g. norm type for norm()
or normalise() functions) can be passed as named arguments in ’...’.

Usage

arrApply(arr, idim = 1L, fun = "sum", ...)

Arguments

arr numeric array of arbitrary dimension

idim integer, dimension number along which a function must be applied

fun character string, function name to be applied

... additional named parameters. Optional parameters can be helpful for the fol-
lowing functions:

• sd(), var() [norm_type: 0 normalisation using N-1 entries (default); 1 nor-
malisation using N entries];

• norm() [p: integer >= 1 (default=2) or one of "-inf", "inf", "fro".]
• normalise() [p: integer >= 1, default=2]
• diff() [k: integer >= 1 (default=1) number of recursive application of diff().

The size of idim-th dimension will be reduced by k.]
• trapz() [x: numerical vector of the same length as idim-th size of arr]

Mandatory parameter:

• multv(), divv(), addv(), subv() [v: numerical vector of the same length as
idim-th size of arr]

• quantile() [p: vector of probabilities in interval [0; 1]]

arrApply 3

Details

The following functions can be used as argument ’fun’ (brackets [] indicate additional parameters
that can be passed in ’...’):

• reducing functions:
– sum()
– prod()
– all()
– any()
– min()
– max()
– mean()
– median()
– sd() [norm_type]
– var() [norm_type]
– norm() [p],
– trapz() [x] (trapezoidal integration with respect to spacing in x, if x is provided, otherwise

unit spacing is used)
– range();

• mapping functions:
– normalise() [p]
– cumsum()
– cumprod()
– multv() [v] (multiply a given dimension by a vector v, term by term)
– divv() [v] (divide by a vector v)
– addv() [v] (add a vector v)
– subv() [v] (subtract a vector v);

• vector reducing/augmenting function:
– diff() [k]
– conv() [v, shape] (convolve with vector v; shape="full" is equivalent to R’s convolve(...,
rev(v), type="open")).

– quantile() [p] (calculate quantiles corresponding to probabilities p; equivalent to R’s
quantile(..., probs=p, type=8)).

RcppArmadillo is used to do the job in very fast way but it comes at price of not allowing NA in the
input numeric array. Vectors are allowed at input. They are considered as arrays of dimension 1.
So in this case, idim can only be 1. NB. Here, range() is different from R version of the homonym
function. In Armadillo, when applied to a vector, it returns a scalar max-min, while in R, it return a
2-component vector (min, max).

Value

output array of dimension cut by 1 (the idim-th dimension will disappear for reducing functions)
or of the same dimension as the input arr for mapping and vector reducing functions. For vector
reducing functions, the idim-th dimension will be different from idim-th dimension of arr. The type
of result (numeric or logical) depends on the function applied, logical for all() and any(), numerical
– for all other functions.

4 arrApply

Author(s)

Serguei Sokol <sokol at insa-toulouse.fr>

Examples

arr=matrix(1:12, 3, 4)
v1=arrApply(arr, 2, "mean")
v2=rowMeans(arr)
stopifnot(all(v1==v2))

arr=array(1:24, dim=2:4) # dim(arr)=c(2, 3, 4)
mat=arrApply(arr, 2, "prod") # dim(mat)=c(2, 4), the second dimension is cut out
stopifnot(all(mat==apply(arr, c(1, 3), prod)))

Index

arrApply, 2

5

	arrApply
	Index

